
Haystack’s User Experience for  
Interacting with Semistructured Information 

David Huynh 
MIT Artificial Intelligence 

Laboratory* 
dfhuynh@ai.mit.edu 

Dennis Quan 
MIT Artificial Intelligence 

Laboratory*  
dquan@media.mit.edu

David Karger 
MIT Laboratory for  
Computer Science* 

karger@theory.lcs.mit.edu 
 

ABSTRACT 
A major stumbling block in the use of information management 
tools such as desktops, email managers, file browsers and web 
browsers is the mismatch between the user’s mental model of in-
formation objects and the system’s implementation model. While a 
user may look at a name on the screen and think of a person, the 
system may consider it dead text. A user who wants to remember 
that a certain email message was sent by a distant cousin may be 
foiled by the fact that email management and family relationship 
records are the domains of two separate applications that do not 
talk to each other. 

The goal of our Haystack system is to reduce the mismatch be-
tween the user’s and the system’s models of information, creating a 
user-object-oriented interface. To achieve this goal, we model the 
user’s data uniformly and at fine levels of granularity using the 
Resource Description Framework (RDF). We demonstrate how 
this internal system model of data can be reflected out to the user 
interface so that the user can manipulate UI representations of the 
information in a uniform manner that makes sense to the user. We 
explain how RDF itself can be used to build a UI framework that 
performs such reflection systematically. Furthermore, we propose 
that operations on and mechanisms for organizing RDF data be 
modeled in RDF as well, making the whole system reflexive and 
generic. We envision that the user’s everyday use of our system 
for interacting with the information that he or she cares about will 
generate metadata and contribute to the global pool of RDF data. 
The Semantic Web can readily leverage the information collected 
by Haystack that matters to the end users. 

Categories and Subject Descriptors 
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces – graphical user interface, interaction styles, prototyping, 
user-centered design. 

General Terms 
Design, Human Factors. 

Keywords 
Context menu, direct manipulation, drag and drop, information 
management, metadata, modal, modeless, object oriented, RDF, 
Semantic Web, uniformity, user interface, user experience, view 
binding. 

1. INTRODUCTION 
In the current software paradigm, several applications are needed 
to store, view, edit, and manage different types of information, 
with each application tailored toward one or a few types of infor-
mation. Cooperation among different applications is limited. For 
instance, the user cannot specify that a favorite recipe (abridged 
and stored in a “recipe database” software) comes from a cook-
book (indexed by a “personal library” software), which has been 
lent to a friend (whose contact information is managed by an “ad-
dress book” software). Because each application focuses on one 
domain of information (e.g. recipes, books, contact info), cross-
domain relationships such as those in the example are hard to 
express and record on the computer. 

Even in dealing with only one application which specializes on a 
limited number of domains, certain types of information in those 
domain are still not expressible in the application’s schemas. For 
instance, since Microsoft Outlook 2000 manages meetings, one 
would expect all things and tasks related to meetings to be in the 
domain of Outlook. In particular, one would expect the ability to 
store a map of a particular meeting location, most logically by 
attaching that map to the “object” representing that location. Un-
fortunately, meeting locations are not first-class objects in Micro-
soft Outlook—they are just text fields of meeting objects. Conse-
quently, to increase the chance of finding the map where the user 
would need it, the user would have to paste the map into the body 
of every single meeting held at that location. The granularity at 
which the software models the information is not fine enough to 
express the information need of the user in this scenario: the first-
class object types in Microsoft Outlook are simply too coarse. 

These problems arise because the applications fail to model in-
formation according to the user’s mental model. While a user may 
look at a name on the screen and think of a person, the system 
may consider it dead text. Why can one spell check only the body 
of an e-mail message but not its subject, or the text of a document 
but not its filename? Why do the context menus invoked from two 
different occurrences of a person’s name in the UI list two differ-
ent sets of operations that do not seem to correlate with the con-
texts in which the name is displayed (see Figure 1)? Why is drag 
and drop supported in some cases and not others? 

1.1 RDF-Based Data Modeling 
The application-centric paradigm on which most of today’s soft-
ware has been built does not satisfy the user’s need. First, infor-
mation is not modeled according to the user’s mental model of his 
or her information: the user often expects to interact with informa-
tion at various levels of granularity when the software can only 
handle what it considers first-class objects in its schemas. Second, 
the user’s data is segregated by application barriers in such a way 
that metadata describing relationships between all of the user’s 

* 200 Technology Square 
 Cambridge, MA 02139 USA 
 
WWW 2003, May 20-24, 2003, Budapest, Hungary. 
ACM xxx. 
Copy right is held by the author/owner(s). 
 



data cannot be easily added. In order to address these issues, in-
formation must be modeled independently of applications and 
modeled in schemas expressive enough to match the user’ s model 
of information. Haystack [7], our information management plat-
form, has adopted the Resource Description Framework (RDF) 
[1], a core technology of the Semantic Web project [2], for these 
two purposes. RDF is capable of describing fine-grained semis-
tructured data in highly expressive and extensible schemas: this 
functionality allows us to better match the user’ s model of infor-
mation. Furthermore, by storing all of the user’ s data in RDF, we 
break the information free from application specific formats and 
open possibilities for synergy between different types of informa-
tion. 

 

 
(a) (b) 

Figure 1. Inconsistent context menus invoked from the text 
strings “Vineet Sinha” in two different views of Microsoft 

Outlook XP: (a) supports adding the e-mail’s author to 
Contacts while (b) does not. 

Because the user’ s information is modeled at the appropriate lev-
els of granularity, we can support user interface manipulations of 
such information in the way that the user expects. Furthermore, 
the single format in which data is stored, namely RDF, enables 
information of different types to be used together in more flexible 
ways that prove useful and intuitive to the user. In this paper, we 
describe our vision of how the user should interact with semis-
tructured information in Haystack and explain how the use of 
RDF enables the realization of that vision. 

1.2 Interaction Model for RDF Data 
First, we adopt the web browser navigation paradigm for allowing 
users to navigate corpora of annotated data. Each piece of infor-
mation can be viewed by browsing to it. Using RDF predicates as 
links, traversing a corpus involves hopping from one piece of 
information to another. This navigation paradigm puts the focus 
on information rather than on applications. This information cen-
tricity is emphasized by the ability of RDF to model information 
at fine levels of granularity. 

RDF itself enables us to extend this navigation paradigm. Links, 
modeled by predicates, are labeled and annotated. Annotation on 
links help improve the user’ s navigation experience by drawing 
together more information relevant to each navigation step. The 
sources of relevant information can also be modeled in RDF, fur-
ther abstracting away storage and local issues from the user. 

Second, we propose a system-managed binding between the 
presentation of information in the user interface and the metadata 
concerning that information stored in the system beneath. This 
binding allows the semantics of the information to be exposed 
systematically throughout the UI and facilitates system support for 
direct manipulation mechanisms such as context menus and drag 
and drop. Direct manipulation in turn enables the integration of 
simple operations whose use can be composed to perform compli-
cated tasks. This is in contrast with monolithic applications that 
provide fixed sets of functionalities whose use, because of appli-
cation barriers, cannot be intermingled. 

Third, we describes several modalities in which the user can or-
ganize his or her information. These organization mechanisms are 
themselves modeled in RDF and made to work on any type of 
information. They include classification mechanisms through the 
concept of collections, and annotation mechanisms through vari-
ous user interfaces. 

Finally, we illustrate the whole user experience brought forth by 
all of the above functionalities through their implementation in 
our Haystack system. 

1.3 Related Work 
Many systems have also been built for visualizing graph data. 
TheBrain.com1, the latest commercial endeavor, models and pre-
sents data as unlabeled, undirected graphs. As a consequence, 
benefits available from the directedness in the RDF model are not 
present in the TheBrain.com system. Furthermore, while graph 
presentations might be suitable for showing related thoughts, they 
are insufficient to provide a coherent interaction experience for 
the common users. Few users perceive their information as seman-
tic networks. Graph manipulations are at worst incomprehensible 
and unusable to novice users, and at best inconvenient and tedious 
for the expert users in the domain of information management. 

There are also systems developed to augment existing information 
types with more metadata. For instance, the Placeless Documents 
system [4] adds user-specified properties to documents so that 
they can be manipulated more directly and managed in a more 
uniform fashion. However, these systems rarely address the us-
ability issues involved in manipulating information in general. 

In addition, since the birth of the Semantic Web, tools have been 
built for visualizing and editing RDF data and schemas. These 
RDF authoring tools generally come in three flavors: (1) ontology 
editors; (2) graph-based representation viewers; (3) schema-
specific user interfaces. However, these kinds of tools often focus 
on collecting data that conforms to some ontology and not on 
addressing the HCI issues of information collection. Ontology 
editors such as Protégé [5] and Ont-o-mat [7] provide effective 
interfaces for allowing ontology modeling experts to enter infor-
mation according to specific ontologies with a high degree of 
precision. They are, however, unsuitable for users who simply 
want to manage information such as e-mail and photographs. 

                                                                 
1 http://www.thebrain.com/. 



2. NAVIGATION PARADIGM 
Figure 2 shows a screenshot of Haystack’ s user interface. On the 
left side of the window is the start pane, and on the right is the 
content area. The start pane can contain several items, e.g., the 
user’ s instant messaging status, a list of favorite documents or 
links, a clipboard-like scrapbook, and a list of starting points from 
which the user can begin a task. In general, the start pane makes 
available the tools and information that the user currently needs to 
accomplish some task at hand. Other objects can be dragged and 
dropped into the start pane. 

The content area acts like a web browser. It has a navigation tool-
bar at the top, with the conventional Back, Forward, Refresh, and 
Home buttons, and an address box. Immediately below the navi-
gation toolbar is the title bar, which shows the title of the object 
being browsed to as well as a set of commands available for alter-
ing the view. In Figure 2, Haystack is depicted displaying a par-
ticular information object: the user’ s Inbox. The content area hosts 
a typical list view containing e-mail messages and a preview pane 
below in this example. 

Any piece of information in Haystack can be viewed by browsing 
to it, much as one does in a web browser. A list of visited infor-
mation objects is maintained to allow backward and forward navi-

gation. A navigation can be triggered by clicking on a link or by 
typing in a Unique Resource Identifier (URI) naming an RDF 
resource that models an information object. In Figure 2, one can 
left-click on “ Google”  in the Favorites list shown on start pane to 
browse to http://www.google.com/. In other cases where left 
clicks are inconvenient, one can right-click on an item and select 
the Browse to command from the popped up context menu (e.g. 
the name “ Jake Beal”  in the selected e-mail message).  

As the Web can be surfed by jumping through links, so can RDF 
data be browsed by following RDF predicates between different 
RDF resources which model different information objects. In the 
following subsections, we describe how the navigation paradigm 
of the Web can be extended with the power of RDF. 

2.1 Predicated Links 
Hypertext links in HTML are unlabeled. More accurately, they are 
labeled on a per-instance basis: in one HTML document, the link 
to its author is labeled “ Author: John Doe”  while in another 
document, the link to its author is labeled “ Written by Joe Smith.”  
With such inconsistencies in the markup, hypertext links are 
mostly useful to the human reader and cannot be processed auto-
matically by the computer. 

 

Figure 2. Haystack’s user interface 



On the Semantic Web, links are modeled with RDF predicates, 
which are resources named uniquely by URIs. These links can be 
systematically analyzed and processed in order to improve the 
user’ s browsing experience. For instance, when the user hovers 
the mouse over the link from a document to its author, Haystack 
can recognize the authoring relationship and pop up a tool-tip 
listing other documents by the same author. On the other hand, if 
the user hovers the mouse over the link from a meeting to the 
same person, who was an attendee in that meeting, Haystack will 
instead show a list of contributions the person made during the 
meeting.2 These types of relevance suggestions can only be made 
because the links are labeled for machine processing—this is the 
primary vision of the Semantic Web [3]. 

2.2 Information Centricity 
Because the Web can be surfed by simply clicking on links to the 
information one wants, the Web appears information-centric to 
the user. Different types of information (e.g. lecture notes, news 
articles, maps, business addresses, restaurant menus, etc.) can all 
be accessed through the same window—that of a web browser. 
There is an absence of applications: in most cases there is no need 
for the user to explicitly start up or shut down applications. This is 
by design: the Web contains content that is independent of operat-
ing systems and independent of software applications. To the user, 
the Web simply contains information. It is this information cen-
tricity that makes the Web easy to use. 

By adapting the web browser navigation paradigm, Haystack 
benefits from this information centricity. However, in Haystack, 
the information centricity is even more apparent. Since RDF can 
model information at any level of granularity, the user can even 
navigate to small “ miscellaneous”  pieces of information. For in-
stance, a meeting location can be viewed by itself rather than as a 
text field in meeting objects. Whereas information on the Web is 
packaged into the unit of web pages, information in Haystack can 
be accessed in any unit that makes sense to the user. 

2.3 Storage Abstraction 
The Web’ s navigation paradigm also provides a storage abstrac-
tion. Each resource on the Web is identified by a URL. The user 
only needs to know its URL in order to access it. All the details 
about the address of the machine on which the resource is stored 
and the full file path corresponding to that resource have been 
made transparent to the user. 

Similarly, in Haystack, each information object is identified by a 
URI. Unlike file paths which are storage dependent and change 
when files are moved, URIs are unique, universal and remain 
unchanged. The user of Haystack only needs to know the URI of 
an information object to access it. The system automatically re-
solves the URI to the storage location of metadata about that URI. 

Metadata can also be used to specify the sources of more metadata 
about a particular URI. This capability is more powerful than 
network address resolution or even HTTP redirections, as multiple 
sources can be specified all at once. For instance, when the user 
seeks information on a person, metadata on that person can be 
retrieved automatically, with authorization, from several sources 
including the person’ s company’ s databank, student records from 
the schools he or she attended, and certain government databases. 

                                                                 
2 These heuristics have not been implemented in Haystack. Other 

forms of assisted navigation are explored in [11]. 

As illustrated, RDF is powerful in its reflexivity: RDF itself can 
be used to help improve navigation through metadata encoded in 
RDF. Similarly, in the next section, we explore how RDF can be 
used to systematically construct UI presentations for RDF data. 

3. SEMANTICS IN PRESENTATION 
RDF allows us to model data in accordance with the user’ s mental 
model of information. Now that data is structured correctly at the 
right levels of granularity, this structure needs to be reflected in 
the presentation of the data so that the user can interact with the 
data naturally. This is accomplished by providing mappings from 
each information object to some on-screen representations—views 
of the object, such that the user can readily associate the views 
with the object. 

Each information object is assigned a default view so that when 
an object is navigated to, its information automatically appears 
through this view without any explicit user action and without any 
seeming help from applications. To the user, information appears 
capable of displaying itself, and displays itself in the most sensi-
ble form based on its semantics. This works toward making the UI 
information-centric. 

3.1 Finer-grained Views 
A piece of information might not appear only when it is navigated 
to. It might appear as part of the presentation of another piece of 
information. For instance, contact objects can appear in the view 
of a meeting object to show meeting attendance. In this example, 
the contact objects are displayed in smaller views than the default 
views presented when those contact objects are navigated to indi-
vidually (Figure 3). 

Haystack makes use of very fine-grained views to present infor-
mation. In the extreme, a view might consist of only a string of 
text, rendered to flow inside a paragraph, capable of flowing from 
one line to another. Smaller views can be easily composed to 
make bigger views. The whole user interface of Haystack is built 
by embedding views within one another. These views make every 
part of Haystack’ s user interface, no matter how small, seem self-
rendering—no application is explicitly called upon to render 
them. Furthermore, every pixel on the screen can be traced back 
to the information objects whose views render that pixel. In other 
words, there is a mapping between the presentational elements in 
the UI and the metadata in the RDF store. 

3.2 Self-updating Views 
So that views remain true representations of the information they 
render, Haystack keeps live the mapping between UI presentation 
and the underlying information being rendered: when the a piece 
of information is changed, its UI representation is updated. The 
mapping becomes a binding. This binding ensures that there is no 
stale version of data on the screen. 

Because small fine-grained views can be easily composed to make 
bigger views, views can be reused in many places in the user in-
terface. As views are self-updating, true representations of under-
lying information, they can simply be embedded and left to man-
age themselves. Consequently, reuse of views is made easy for the 
UI designers. Through reuse, the presentation of any information 
object will appear the same in similar contexts where the object is 
presented. This makes the UI appear uniform and coherent to the 
user. 



 

Figure 3. Composition of views 

Once again we wish to emphasize the self-sufficiency of RDF. 
RDF is both the cause and the solution for the generic UI frame-
work of Haystack that we present herein: Since RDF can encode 
more and finer-grained information types, it calls for a generic 
framework to present the information. At the same time, it enables 
the encoding of metadata that helps build such a framework. 

4. SEMANTICS OF MANIPULATION 
Through the use of nested views, each UI element on the screen 
can be systematically traced back to underlying information ob-
jects whose views render that pixel. Taking advantage of this 
binding, Haystack lets the user manipulate the UI elements on 
screen in order to interact with the underlying information objects. 
In essence, this is system support for direct manipulation, auto-
mated and taken to a fine level of granularity. To the user, each UI 
element, and even each pixel, appears to reflect the information in 
the RDF store. 

4.1 Operations 
In order to support direct manipulation, we must define the se-
mantics of available actions that can be taken. In Haystack, infor-
mation objects can be acted upon by operations. An operation is 
just another resource annotated with the types and characteristics 
of objects that it can act on, and the code that should be executed 
to carry out the action. 

Because operations are themselves first-class information objects 
kept in the RDF store, they can be: 

� queried, e.g. to find out which operations are applicable on 
an object; 

� edited, e.g. to use newer implementations; 
� annotated, e.g. to record their frequency of use; 
� bookmarked by the user for regular use; 
� organized (see section 5); 
� sent to another user; 
� searched for by the user; 
� etc. 

Because Haystack is built on a reflexive data model, Haystack 
itself is reflexive. In other words, operations can be operated on in 
the same way other information objects can be. As a consequence, 
the whole UI appears uniform and coherent, and it is easy for the 
user to develop a simple mental model of the system. 

4.2 Direct Manipulation 
A special type of operation is those operations that can invoked by 
direct manipulation. Direct manipulation in Haystack is currently 
supported through two mechanisms: drag and drop, and context 
menus. 

4.2.1 Drag and Drop 
When a UI element is dragged, Haystack determines the inner-
most view containing that element, and traces to the underlying 
object being rendered by that view. That object is the drag source. 

During a drag operation, as the mouse pointer travels over various 
UI elements on the screen, Haystack determines the innermost 
views containing those elements, and highlights those views to 
provide feedback to the user (Figure 4). When a drop occurs, 
Haystack detects the UI element receiving the drop and deter-
mines the associated underlying object— the drop target. Hay-
stack then queries for all operations of type drag and drop opera-
tion, which take two arguments, the first applicable to the drag 
source and the second to the drop target. If there is only one such 
operation, it is carried out immediately. Otherwise, the user might 
be prompted to select the desired operation among many; or the 
system can decide to choose the most likely operation, but allow 
the user to undo it and select the desired one. 

 

Figure 4. Highlighting of views during drag and drop 

Heuristics and machine learning algorithms can be used to detect 
which object the user wants to drag among those rendered by the 
hierarchy of nested views enclosing the pixel where the drag is 
initiated. The drop target can also be detected similarly. The cur-
rent implementation chooses the object corresponding to the in-
nermost enclosing view as the first-order approximation. 

4.2.2 Context Menus 
When the user right clicks on a UI element, Haystack determines 
the associated underlying objects and queries for all applicable 
operations. Figure 5 shows a sample context menu, which lists all 
underlying objects whose views enclose the clicked pixel (i.e. 
both the picture entitled “ S_0729”  and the album containing that 
picture). With each object is a pop-out submenu listing applicable 
operations. Machine learning algorithms can be used to specify 
the order of the operations, such that the most desirable ones are 
at the top. The current implementation orders the operations in 
alphabetical order. 

Weekly Group Meeting 

Attendees: Vineet Sinha, 
Dennis Quan, and David 
Huynh 

Location: Room 302, 
Building NE43 

 

Contact  
object 
named 
“ David 
Huynh”  

Meeting 
object 

attended by RDF store con-
tains informa-
tion to be dis-
played 

Large and small views 
render information to 
the user interface 



Because context menus are implemented auto-
matically, they are provided everywhere in the 
Haystack UI. The implication of this uniform 
support is that the user always knows how to 
find an operation on any information object 
being displayed. There is one guaranteed way 
for listing the available operations. 

The avid reader might note that as more opera-
tions are incorporated into the system, the con-
text menus might become overcrowded. This is 
yet another instance of the information overload 
problem, and a common solution can be used to 
address all instances. Haystack provides unified 
mechanisms for organizing and retrieving in-
formation of all types, from e-mail messages to 
operations. Section 5 has a detailed description 
of these mechanisms. 

4.3 Operation Composition 
By unifying the format in which data is en-
coded, RDF makes functionality integration 
easier. Every piece of information is encoded in 
RDF and accessible through the same RDF store 
interface; information objects of the same type 
share the same schema. This blackboard archi-
tecture allows each piece of functionality to 
specialize in handling only data in a small set of 
specific schemas very well rather than attempt-
ing to deal with a larger domain of data less 
consistency and finesse. As all information objects in Haystack 
are made to appear capable of rendering themselves and capable 
of offering operations intrinsic to themselves, the concept of ap-
plications— software that acts upon data— has been changed. 

In Haystack, there is no visible presence of monolithic applica-
tions. Instead, there are operations that perform small tasks. Such 
operations are individually simple and easy to learn, and their use 
can be composed arbitrarily by the user to perform complicated 
tasks. By “ operation composition”  we mean the carrying out of an 
ordered sequence of steps, each involving the use of one particu-
lar operation, aimed to accomplish an end goal not achievable by 
applying any operation alone. 

4.4 Encapsulation of Unfinished Operations 
Figure 6 shows a piece of UI inserted into the start pane when the 
Rotate Picture operation is selection from the context menu 
shown in Figure 5. This piece of UI is the view of a resource used 
to capture the carrying-out of the Rotate Picture operation on the 
S_0729 picture. This resource is called a UI continuation, essen-
tially the encapsulation of an unfinished operation. The UI con-
tinuation provides a user interface for completing the operation 
and returning to the original context where the operation was 
invoked (i.e. the view of the picture S_0729 in this example). 

Since a UI continuation is itself an information object, it can be 
manipulated just like any other object. For instance, it can be 
bookmarked and returned to at a later time. This is useful when 
the user decides to turn his or her attention to another task. Be-
cause the UI continuation is modeless, if the user keeps on the 
same task, he or she can still navigate to other information objects 
in order to find more information that helps complete the task. 

The UI continuation does not lock the user into the same screen 
until he or she finishes the task. 

In contrast, existing applications do not have any mechanism for 
capturing the context of an unfinished task. The user has to trace 
through a sequence of user interface actions to return to a previ-
ously unfinished task (e.g. re-opening an application, invoking a 
certain menu command, and clicking on a sequence of buttons on 
a series of dialog boxes). Because the context of a task is often 
defined by a set of blocking user interfaces in the form of modal 
dialog boxes, the user is locked into that context, unable to make 
use of other parts of the same application to help completing the 
task. The user is forced to dismiss a stack of modal dialog boxes 
in order to have access to other functionalities in the application 
and then reconstruct the context by opening the same stack of 
modal dialog boxes again. 

 
Figure 6. Sample UI continuation 

 

Figure 5. Sample context menu 



5. UNIFIED ORGANIZATION 
As the user’ s information accumulates, there is a need for organi-
zation either by the user or automatically by the system. Modeling 
data in RDF helps implement organization mechanisms that better 
match the user’ s concepts of organization. First, organization can 
be applied to all information objects, big and small. The user can 
organize various types of items ranging from e-mail messages, 
contacts, documents, bookmarks, journal entries, notes, appoint-
ments, and tasks to operations, system notifications, instant mes-
sages, editing comments on documents, frequently used biblio-
graphic entries, favorite video clips, etc. and organize them using 
the same set of mechanisms. 

Furthermore, objects of different types can be organized together. 
The Favorites list can contain more than just links to web pages: 
to the user, any object can be a favorite regardless of its type 
(Figure 7). E-mail messages and instant messages can be placed in 
common lists to show conversations that span over several deliv-
ery modes [10]. Appointments and tasks can appear together on 
the user’ s calendar; they can be sorted and prioritized with respect 
to one another. The same timeline view can be used to display 
company meetings and family photos. The user has to learn to use 
only a small set of organization mechanisms that work on several 
types of information. In contrast, today’ s software offer many 
application-specific organization mechanisms that overlap in 
functionality but differ in their user interfaces. 

5.1 Organization by Classification 
The most common mechanism for organization is classification: 
the assertion of each item’ s membership in one or more classes. 
The assertion can take the form of storage selection (e.g. placing 
the item into a box) or of category tagging (e.g. sticking colored 
labels on the item). The former gives immediately the feel that 
information is being divided into smaller units of organization and 
that the user has indeed made progress in organization such that 
only smaller subsets need to be dealt with at any one time. The 
latter allows the flexibility of classifying each item into more than 

one category. The latter can emulate the former by enforcing sin-
gle membership. In Haystack, we model category tagging through 
the concept of collections and adapt it to support storage selection 
where appropriate. 

 

Figure 7. The Favorites list contains items of different types: 
web pages (CNN and Google), photo albums (Conference trip 

photos), operations (Send e-mail), and other collections (Inbox) 

A collection is a mathematical set. Items can be inserted into a 
collection by asserting their memberships in that collection. An 
item can belong in several collections, much as a person can be 
member of several clubs. Organization can be achieved by putting 
items into collections. 

Collections are used pervasively in Haystack for the purpose of 
organization. For instance, the Favorites list is a collection; the 
user’ s Inbox is a collection; the list of menu commands in a con-
text menu is a collection. By implementing generic mechanisms 
for constructing and managing collections, we provide the user 
with a uniform way for organizing his or her information as well 
as interacting with the system’ s data. Figure 9 shows that the col-
lection of operations in the context menu shown in Figure 5 can 
be displayed in the same view as e-mail messages (compare to 
Figure 2). The same functionality including sorting and grouping 
can be applied uniformly on both e-mail messages and operations. 
In addition, when the user manipulates the items in this view, the 
context menu will reflect the changes. 

The generic mechanism for building collections is drag and drop. 
Custom operations can be provided for special collections: Figure 
5 shows one such operation— the Add to Favorites operation. 

 

Figure 8. Categorization checkboxes 



Other custom UIs are provided where appropriate. Figure 8 dis-
plays a list of checkboxes corresponding to several collections; by 
checking a checkbox, the user puts the selected picture into the 
corresponding collection. Multiple checkboxes make it easy to 
classify an item into more than one category. Figure 2 shows an-
other custom piece of UI that allows the user to quickly classify 
an e-mail message as spam. 

 

Figure 9. Collection of operations 

5.2 Organization by Annotation 
Another mode of organization is by annotation. The user can in-
sert comments into the body of a long document and then use the 
resulting list of comments as bookmarks into the document. In 
other cases, annotations create associations between various in-
formation objects that are meaningful to the user. For instance, by 
annotating a certain book with the fact that it has been lent to a 
friend, a forgetful user can later determine how to locate the book. 

In Haystack, annotation can be performed implicitly or explicitly. 
When the user drags a document onto an e-mail message, Hay-
stack infers that the document should be attached to the message. 
The attach predicate is added between the message and the docu-
ment. As a result, an annotation has been made implicitly. When 
the user replies to an e-mail message, the replyTo predicate is 
added between the new message and the original one. 

Annotations can be added more explicitly through Haystack’ s 
relationship view, which presents items as graph nodes and allows 
the user to draw labeled arrows between the nodes. This UI is 
particularly useful when the user needs to handle information in 
graph or tree forms. It is easy to construct a family tree by draw-
ing arrows from parents to children. Likewise, thoughts captured 
as notes can be linked together in a graph to show the logic of an 
argument. 

Haystack also provides a metadata editor for editing raw RDF 
data directly. Figure 10 shows this editor listing all outgoing 
predicates from the Favorites collection object. The user can add 
his or her own predicates in order to extend existing schemas or to 
create new schemas. 

5.3 Organization as Metadata Input 
The acts of organization that the user takes cause metadata to be 
added to the system. As users go about their daily use of Hay-
stack, organizing and manipulating information that they care 
about, metadata is being constantly added to the global pool of 
Semantic Web data. 

 

Figure 10. Metadata editor 

6. USAGE SCENARIO 
In this section, we illustrate the use of Haystack to perform a se-
ries of information management tasks. Consider the following 
scenario: 

� The user is reading an e-mail sent from a colleague about a 
recent conference (Figure 11). The colleague asked the user 
to verify that the word “ plethora”  means “ abundance.”  The 
user right clicks on the word “ plethora”  and finds that it of-
fers an operation to look up its meaning in a dictionary. The 
operation brings the user to an online dictionary, which 
specifies that “ plethora”  is a synonym of “ abundance.”  

� The user clicks the Back button to return to the e-mail mes-
sage, and clicks on the Forward button on the title bar to 
forward the e-mail to her supervisor, as requested by her col-
league. This action navigates to a newly created e-mail mes-
sage, with the attachments of the old message automatically 
included. 

� The user decides to classify the e-mail message being com-
posed as its topic is still fresh in her mind. She simply checks 
the appropriate categories as illustrated for organizing pic-
tures in Figure 8. In a conventional e-mail client, the user 
would have to open the Drafts folder, locate the message, 
drag it to the appropriate folder, and return to the composi-
tion window. 



� The user finds that some of the attached pictures are not in 
proper orientation as evident from their thumbnails. The user 
right clicks on some of the thumbnails (in the Attachments 
pane of the message’ s view) and selects the Rotate operation. 
There is no need to save the attachments to files, open an im-
age editing application, open the files, rotate the images, re-
save them, and re-attach them to the e-mail message. The im-
ages can be manipulated directly wherever they are dis-
played, even when displayed as thumbnails. 

� The user wants to attach her own photographs to the e-mail 
message. She clicks on the link labeled “ Conference trip 
photos”  in her list of Favorites things (Figure 2). This action 
navigates to the photo album entitled “ Conference trip pho-
tos.”  She then drags one of the pictures (S_0739) into the 
Scrapbook on the Start pane (Figure 12). 

� The user then clicks Back to return to the e-mail message, 
and drags the picture from the Scrapbook into the Attach-
ments area of the message. 

� The user fills in her supervisor’ s e-mail address and clicks on 
the Send button in the title bar to send the message. 

 

Figure 12. Picture in Scrapbook 

 

 

Figure 11. Looking up a word in an e-mail message 



7. ACKNOWLEDGMENTS 
This work was supported by the MIT-NTT collaboration, the MIT 
Oxygen project, and IBM. 

8. REFERENCES 
[1] Resource Description Framework (RDF) Model and Syntax 

Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/. 

[2] Berners-Lee, T. Primer: Getting into RDF & Semantic Web 
using N3. http://www.w3.org/2000/10/swap/Primer.html. 

[3] Berners-Lee, T., Hendler, J., and Lassila, O. “ The Semantic 
Web.”  Scientific American, May 2001. 

[4] Dourish, P., Edwards, W.K., et al. “ Extending Document 
Management Systems with User-Specific Active Properties.”  
ACM Transactions on Information Systems, vol. 18, no. 2, 
April 2000, pages 140–170. 

[5] Eriksson, H., Fergerson, R., Shahar, Y., and Musen, M. 
Automatic Generation of Ontology Editors. In Proceedings 
of the 12th Banff Knowledge Acquisition Workshop, Banff, 
Alberta, Canada, 1999. 

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design 
Patterns. Boston: Addison Wesley, 1995. 

[7] Handschuh, S., Staab, S., and Maedche, A. CREAM—
Creating relational metadata with a component-based ontol-
ogy-driven annotation framework. K-CAP ’ 01. 

[8] Huynh, D., Karger, D., and Quan, D. (2002). “ Haystack: A 
Platform for Creating, Organizing and Visualizing In-
formation Using RDF.”  Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002). 
http://haystack.lcs.mit.edu/papers/sww02.pdf. 

[9] Lansdale, M. “ The Psychology of Personal Information Man-
agement.”  Applied Ergonomics, vol. 19, no. 1, 1988, pages 
55–66. 

[10] Quan, D., Bakshi, K., and Karger, D. “ A Unified Abstraction 
for Messaging on the Semantic Web.”  Submission to The 
Twelve World Wide Web Conference 2003 (WWW2003). 

[11] Sinha, V. and Karger, D. “ Information Retrieval for Semis-
tructured Data.”  Submission to The Twelve World Wide 
Web Conference 2003 (WWW2003). 

 

 


