
Adenine: A Metadata Programming Language

Dennis Quan DQUAN@MIT.EDU
David F. Huynh DFHUYNH@AI.MIT.EDU
Vineet Sinha VINEET@AI.MIT.EDU
David Karger KARGER@THEORY.LCS.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139 USA

1. Introduction

Haystack (Huynh et al., 2002), our personal information
repository, uses a shared metadata store and a system of
agents for helping the user manage his or her information.
Agents use the shared metadata store for storing the user’s
information, their own state, as well as interface and end-
point information on how to contact each other.

Metadata in the Haystack environment is expressed accord-
ing to the Resource Description Framework (RDF) (RDF,
1998). In essence, RDF is a format for describing semantic
networks or directed graphs with labeled edges. Nodes and
edges are named with uniform resource identifiers (URIs),
making them globally unique and thus useful in a distrib-
uted environment. Node URIs are used to represent objects,
such as web pages, people, agents, and documents. A di-
rected edge connecting two nodes expresses a relationship,
given by the URI of the edge.

In a system such as Haystack, a sizeable amount of code is
devoted to creation and manipulation of RDF-encoded
metadata. We observed early on that the development of a
language that facilitated the types of operations we fre-
quently perform with RDF would greatly increase our pro-
ductivity. As a result, we have created Adenine. An example
snippet of Adenine code is given in Figure 1.

Figure 1. Sample Adenine code.

2. Syntactic Support for RDF

The motivation for creating this language is twofold. The
first key feature is making the language’s syntax support the
data model. Introducing the RDF data model into a standard
object-oriented language is fairly straightforward; after all,
object-oriented languages were designed specifically to be
extensible in this fashion. Normally, one creates a class li-
brary to support the required objects. However, more ad-
vanced manipulation paradigms specific to an object model
begin to tax the syntax of the language. In languages such as
C# and Python, operator overloading allows programmers to
reuse built-in operators for manipulating objects, but one is
restricted to the existing syntax of the language; one cannot
easily construct new syntactic structures. In Java, operator
overloading is not supported, resulting in verbose APIs be-
ing created for any object oriented system. Arguably, this
verbosity can be said to improve the readability of code.

On the other hand, lack of syntactic support for a specific
object model can be a hindrance to rapid development. Pro-
grams can end up being three times as long as necessary
because of the verbose syntactic structures used. This is the
reason behind the popularity of domain-specific program-
ming languages, such as those used in Matlab, Macromedia
Director, etc. Adenine is such a language. It includes native
support for RDF data types and makes it easy to interact
with RDF containers (i.e., graphs of RDF) and services.

3. Portable Representation

The other key feature of Adenine is its ability to be com-
piled into RDF. The benefits of this capability can be classi-
fied as portability and extensibility. Since 1996, bytecode
virtual machine execution models have resurged as a result
of Java’s popularity. Their key benefit has been portability,
enabling interpretation of software written for these plat-
forms on vastly different computing environments. In es-
sence, bytecode is a set of instructions written to a portable,
predetermined, and byte-encoded ontology.

Prefixes for simplifying input of URIs
@prefix : <urn:test-namespace:>

:ImportantMethod rdf:type rdfs:Class

method :expandDerivedClasses ;
rdf:type :ImportantMethod ;
rdfs:comment "x rdf:type y, y rdfs:subClassOf z => x rdf:type z"
 # Perform query
 # First parameter is the query specification
 # Second is a list of the variables to return, in order
 = data (query {
 ?x rdf:type ?y
 ?y rdfs:subClassOf ?z
 } (List ?x ?z))

 # Assert base class types
 for x in data
 # x[0] refers to ?x and x[1] refers to ?z
 add { x[0] rdf:type x[1] }

Adenine takes the bytecode concept one step further by
making the ontology explicit and extensible and by replac-
ing byte codes with RDF. Instead of dealing with the syntac-
tic issue of introducing byte codes for new instructions and
semantics, Adenine takes advantage of RDF’s ability to ex-
tend the “object code” graph with new instructions. One
recent example of a system that uses metadata-extensible
languages is Microsoft’s Common Language Runtime
(CLR). In a language such as C#, developer-defined attrib-
utes can be placed on methods, classes, and fields to declare
metadata ranging from thread safety to serializability. Com-
pare this to Java, where support for serializability required
the creation of a new keyword called transient. The keyword
approach requires knowledge of these extensions by the
compiler; the attributes approach delegates this knowledge
to the runtime and makes the language truly extensible. In
Adenine, RDF assertions can be applied to any instruction.

4. Comparison with Lisp

These two features make Adenine very similar to Lisp, in
that both support open-ended data models and both blur the
distinction between data and code. However, there are some
significant differences. The most superficial difference is
that Adenine’s syntax and semantics are especially well-
suited to manipulating RDF data. Adenine is mostly stati-
cally scoped but has dynamic variables that address the cur-
rent RDF containers from which existing statements are
queried and to which new statements are written. Adenine’s
runtime model is also better adapted to being run off of an
RDF container. Unlike most modern languages, Adenine
supports two types of program state: in-memory, as is with
most programming languages, and RDF container-based.
Adenine in effect supports two kinds of closures, one being
an in-memory closure as is in Lisp, and the other being per-
sistent in an RDF container. This affords the developer more
explicit control over the persistence model and makes it
possible for agents written in Adenine to be distributed.

5. Syntax

The syntax of Adenine resembles a combination of Python
and Lisp, whereas the data types resemble Notation3. As in
Python, tabs are used to denote lexical block structure.

Adenine is an imperative language, and as such contains
standard constructs such as functions, for loops, arrays, and
objects. Function calls resemble Lisp syntax in that they are
enclosed in parentheses and do not use commas to separate
parameters. Arrays are indexed with square brackets as they
are in Python or Java. Also, because the Adenine interpreter
is written in Java, Adenine code can call methods and access
fields of Java objects using the dot operator, as is done in

Java or Python. The execution model is quite similar to that
of Java and Python in that an in-memory environment is
used to store variables; in particular, execution state is not
represented in RDF. Values in Adenine are represented as
Java objects in the underlying system.

Adenine methods are functions that are named by URI and
are compiled into RDF. To execute these functions, the Ade-
nine interpreter is passed the URI of the method to be run
and the parameters to pass to it. The interpreter then con-
structs an initial in-memory environment binding standard
names to built-in functions and executes the code one in-
struction at a time. Because methods are simply resources of
type adenine:Method, one can also specify other metadata
for methods. In the example given, an rdfs:comment is de-
clared and the method is given an additional type, and these
assertions will be entered directly into the RDF container
that receives the compiled Adenine code.

The top level of an Adenine file is used for data and method
declarations and cannot contain executable code. This is
because Adenine is in essence an alternate syntax for
RDF/XML. Within method declarations, however, is code
that is compiled into RDF; hence, methods are like syntactic
sugar for the equivalent Adenine RDF “bytecode” .

6. Applications

About a quarter of the Haystack source base is written in
Adenine. A significant portion of this source is user inter-
face code, where screen layouts are completely described in
RDF. Adenine is used to generate screen layouts dynami-
cally, in event handlers for responding to user input, and for
writing agents that process information, as most information
in Haystack is described in RDF. Development on Adenine
is ongoing, and Adenine is being used as a platform for test-
ing new ideas on writing RDF-manipulating agents.

References

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A
Platform for Creating, Organizing and Visualizing Infor-
mation Using RDF. Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002).
Honolulu, HI. http://haystack.lcs.mit.edu/papers/sww02.pdf.

Resource Description Framework (RDF) Model and Syntax
Specification. (1999). http://www.w3.org/TR/1999/REC-
rdf-syntax-19990222/.

Acknowledgements

This work was supported by the MIT-NTT collaboration, the MIT
Oxygen project, a Packard Foundation fellowship, and IBM.

