
Magnet: Supporting Navigation in Semistructured Data
Environments

Vineet Sinha
vineet@csail.mit.edu

David R. Karger
karger@theory.lcs.mit.edu

MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
32 Vassar Street, Cambridge, MA 02139

ABSTRACT
With the growing importance of systems containing arbitrary semi-
structured relationships, the need for supporting users searching in
such repositories has grown. Currently support for users’ search
needs either has required domain-specific user interfaces or has re-
quired users to be schema experts. We have developed a general-
purpose tool that offers users helpful navigation and refinement op-
tions for seeking information in these semistructured repositories.
We show how a tool can be built without requiring domain-specific
assumptions about the information being explored. In addition to
describing a general approach to the problem, we provide a set of
natural, general-purpose refinement tactics, many generalized from
past work on textual information retrieval.

Keywords
Navigation, searching/browsing, information retrieval, semistruct-
ured data, metadata

Categories and Subject Descriptors
H.3 [Information Search]: Information Search and Retrieval;
H.3.3 [Information Search and Retrieval]: Query formulation;
H.4.3 [Communications Applications]: Information browsers

1. INTRODUCTION
Modern digital information takes many forms: e-mails, appoint-
ments, papers, online purchases, etc. These forms of information
often haveattributes—for example, e-mails have subjects, appoint-
ments have meeting times, and online purchases have prices. Addi-
tionally, the information is connected byrelationsof various types
to other pieces of information—for example, an e-mail sender’s
contact information, an appointment location, and online purchase
sites. The use of attributes and relations (structured information) al-
lows for increased precision in information management activities,
compared with typical text-based (unstructured) information. For
example, while users of unstructured text-search systems are able
to search for bookscontainingthe word “James,” systems lever-
aging the structure available in metadata allow users to distinguish

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2005June 14-16, 2005 Baltimore, Maryland, USA.
Copyright 2005 ACM 1-59593-060-4/05/06$5.00.

in their searches between booksaboutJames and bookswritten by
James.

In such systems leveraging structured data, a key challenge is to
support the search process. Currently support for powerful data-
base searches is availableif the user is a sophisticated database
administrator who is familiar with the schema, the data, and the
system’s querying functionality. Alternatively, one can sometimes
build good naive-user interfaces in a domain-specific manner and
on a per-schema basis. Building a search interface is difficult be-
cause users frequently do not know exactly what to ask the system.
In such cases they often seek to take an iterative approach. They
need to be able to repeatedly pose queries, review the results, and
refine the query, to “home in” on the target information [2, 22].
Easy-to-use support for powerful searches over varying schemata
requires that we offer this kind of iterative browsing and refine-
ment.

In this paper, we present Magnet, a system supporting naive-user
navigation of structured information via a domain-independent search
framework and user interface. We show that the vector space model
popular in textual information retrieval can be effectively adapted
to structured information,withoutsacrificing the benefits of struc-
tured information over unstructured. Doing so lets us take several
fuzzy navigation and browsing techniques popularized in the text-
retrieval domain and apply them to structured information. Magnet
supports both database-oriented refinement based on specifying ad-
ditional attributes, and refinement based on fuzzier notions of “sim-
ilarity.” Magnet is able to use these techniques to support browsing
even in the absence of any schematic information. At the same
time, it takes advantage of any available schematic information to
specialize and thus improve the user’s browsing interface.

Because Magnet does not rely on carefully crafted schemas or other
domain knowledge, it can be applied tosemistructureddata just as
easily as structured data. Magnet consumes RDF [18], a WWW
standard for representing semistructured (and structured) data as a
semantic network, connecting items with labeled arcs. Magnet’s
methods can apply equally well to XML [29], another popular rep-
resentation of semistructured information. We foresee a significant
growth in both the availability and the number of contributors of
such semistructured information. This will happen at the enter-
prise level as part of the growth of the Semantic Web. It may also
happen at the individual level, if tools like RDF help in the long-
overdue migration of individual users’ structured information from
application-specific repositories to general-purpose databases. As
semistructured data becomes more common, tools for browsing it
become more important. And as the pool of contributors creating

semistructured data grows, we will face an explosion in the number
of different (and possibly incomplete or inaccurate) schemas under
which information is disseminated. In such a situation, it becomes
less and less feasible to design a domain-specific interface for each
new schema encountered: instead, we need tools such as Magnet
that can provide effective browsing of newly encountered, or less
than fully structured, information.

At the same time, it is beneficial to take advantage of whatever
schema informationis available. We discuss certain useful schema
annotations and show how Magnet makes use of them, when avail-
able, to improve users’ navigation experiences by specializing the
available browsing steps and the way they are presented to the user.

2. RELATED WORK
A wide variety of work has been done in developing end-user inter-
faces to support sophisticated and precise information needs. For
unstructured text environments, Scatter/Gather offers a navigation
system based on document clustering [6]. Given a large collec-
tion, Scatter/Gather creates topical clusters and lets the user pick
ones that seem interesting to create a smaller collection. Similarly,
the NaviQue prototype provides a single zoomable visualization for
users to query and view results in an attempt to blend the ease-of-
use of browsing interfaces with the power available from query-
ing [10]. For a given collection, NaviQue uses document-similarity
to represent distances between documents in the visualization, with
clusters of documents having a topic displayed. Users are allowed
to refine the collection by either entering keywords, or selecting
an interesting cluster of documents and zooming in on the clus-
ter. Scatter/Gather and NaviQue demonstrate the synergies that can
be achieved by supporting navigation and querying together, and
Magnet tries to achieve similar synergies in structured models.

Among systems trying to leverage the strength of structured mod-
els, Catarci et al. [5] have surveyed a large number of visual query
systems. These systems are designed for databases and present
interfaces on top of domain-specific schemas known in advance.
Similarly, the Flamenco project [28] provides powerful tools to
help users refine queries by selecting metadata, and has thus demon-
strated the power of content-oriented category metadata. While
Flamenco requires a schema expert to provide the domain-specific
customizations, Magnet focuses on being applicable in the absence
of such information (with hooks to support customization to the
level of other systems). Magnet tries to be agnostic about the data
being browsed; it inspects existing data and attempts to automati-
cally provide interfaces similar to those handcrafted for Flamenco.

A number of systems have been designed to interact with semi-
structured data; however, such systems typically focus on display-
ing the semistructured graph and performing queries, rather than
supporting user searches with browsing and refinement of query
results. Lore uses a concept called Dataguides to retrieve structural
schema summaries and uses the summaries to support query formu-
lation by allowing users to fill in constraints in one or more of the
many possible fields [19]. While the use of Dataguides improves
the search process, users need to explicitly perform queries on the
system to browse results. Interactive querying with Dataguides [11]
was supported by improving system responsiveness and building
structural schema summaries on the search results. That system
tries to ease the process of the user explicitly querying against a
graph, but does not provide users with suggestions for their next
step (to make the search process intuitive and incremental). Trigoni
[26] uses an approach to support search strategies more explicitly.

She allows the user to combine a set of templates describing the in-
teresting portion of the semistructured graph. While templates are
provided to effectively support various search strategies, the system
makes users explicitly decide on one of the varying search strate-
gies to combine in an SQL like query language.

Other approaches to supporting searches in semistructured infor-
mation have been used with XML documents. Carmel et al. [4]
use contextual information found in the path to a desired document
as terms for reranking documents and improving result sets. In
contrast, Magnet focuses on offering the user summaries of result
sets, to help users build up a better mental model of the data for
better searching, and offers useful refinement steps that they can
use to iteratively home in on their desired results. Egnor et al.[7]
have attempted to use iterative refinement of structural information
for searching by users who are not schema experts. While their
approach has similar goals to that of Magnet, they use a starting
keyword search to select a schema, and then limit the documents
being searched to this schema, using schema information for refin-
ing their query. In contrast, Magnet supports users working with
multiple schemata at any point in the search, and integrates all the
refinement options based on any of the relevant schemata.

Magnet consumes RDF, an evolving WWW Consortium Standard
for representing semistructured information [18]. RDF represents
information by a directed graph in which the information objects
are represented by nodes and the various attributes and relation-
ships are represented byproperty links connecting the nodes to
values (i.e., numbers and strings) or to other complex information
objects. This type of semantic network representation is increas-
ing in popularity. Another standard for storing semistructured data,
XML, generally represents semistructured data as trees (rather than
general graph), although it can use indirection to represent more
general structures. There are often natural mappings from RDF
to XML and back. Our approach is applicable to either (or any
other) semantic network data representation, although our imple-
mentation is based on RDF. The Longwell suite [23] also provides
navigation capabilities for RDF repositories; however, like the Fla-
menco project it also expects domain-specific customizations.

3. INTERFACE WALKTHROUGH
Magnet is a component of the Haystack’s system [14]. To Haystack’s
general-purpose user interface for browsing and manipulating arbi-
trary semistructured information, Magnet adds the ability to browse
towards an information need. Haystack provides a simple single-
window browser-like interface for the user (shown in Figure1), as
well as panes for storing bookmarks, a scrapbook, starting points,
etc. While Magnet is built on top of a semistructured repository, it
uses an interface similar to the faceted browsing interface tested
in the Flamenco project [28]. On top of this interface, Magnet
presents the user with additional navigation options and is able to
work seamlessly on arbitrary data sources.

Figure1 shows the result of navigation in the repository consisting
of recipes from the website Epicurious.com, used for the evaluation
of our interface in a user-study. Like Lore’s Dataguides the inter-
face shows that the collection of recipes has properties like cook-
ing method, cuisine type, and ingredient. Additionally, Magnet’s
interface also provides the users with an overview of the collec-
tion and shows the user that a large number of the recipes have
cloves, garlic, olives and oil as ingredients. Magnet’s interface fur-
ther supports finding other recipes having similar ingredients, or
those recipes sharing a common ingredient, and at the same time

Figure 1: The navigation system on a collection of recipes.

keeps track of the user’s history.

3.1 Starting information searches
We expect that a search may often be initiated by specifying key-
words, as this requires the least cognitive effort in planning the
query. Users can do so by entering keywords in the toolbar shown
in Figure 1. Keyword searches and other navigation steps often
result in a collection of results as can be seen in the figure. Naviga-
tion suggestions are presented to the user in the navigation pane as
can be seen in the left part of Figure1.

Users arriving at large collections, were the navigation pane is in-
adequate, can use a specialized interface in the main pane (shown
in Figure2) to get a broad overview of the occurrence of metadata
in the collection as well as to enable multiple navigation paths for
refining the collection. While the number of navigation suggestions
in this initial view of information may be large, the view provides
an organized and sorted display of information to allow the user to
gain a summary of the data and start the browsing session.

The interfaces shown in Figure1 and Figure2, jointly build dynam-
ically the view for faceted metadata as suggested by Yee et al. [28].
Users can click and select a refinement option, such as Greek cui-
sine, to be presented with a collection of results in the main window
and navigational suggestions in the left pane (similar to Figure1).

3.2 Navigation pane
The navigation pane on the left in Figure1 starts by showing at
the top that the current collection is being displayed as the result
of a conjunctive query consisting of three terms or constraints, i.e.
the type of items are recipes, the recipes are of the Greek cuisine,
and have an ingredient being parsley. The interface allows the user
to further remove query terms by clicking on the ‘X’ by the con-
straints, and offers more powerful features like negation of the con-
straints through context menus (right clicking on the constraints).
Thus, the user in Figure1 can decide to either view all the Greek
recipes (by removing the parsley ingredient constraint) or view all
recipes containing parsley but those that are not Greek.

Figure 2: Magnet’s interface on a large collection.

Below the query constraints in Figure1 are the navigation recom-
mendations shown through a set of advisors. TheSimilar Items
advisor in the upper left pane suggests additional items (recipes)
that have the sameOverall content (textual and structural) or share
a commonPropertywith the collection in the main window. The
Refine Collectionsadvisor shown next (in the middle left) suggests
refining the search by one of the metadata attribute axes, as well as
by words in the body or in the title of the document. TheModify
advisor in the lower left allows the user to go to related collections,
and in the Figure suggests that the user negate a constraint. Simi-
larly, theRefinement Historyadvisor in the navigation pane allows
the user to undo previous refinements. Since the user has navigated
to acollection, the suggestions presented in the navigation pane are
those relevant to refining and finding related collections. When in-
dividual items are displayed, Magnet suggests collections of items
similar to the given one. The user, therefore, can fluidly navigate
from items to relevant collections and back as their understanding
of their search problem changes.

Advisors thus allow a user to refine a collection of recipes to only
show appetizers, by presenting the user with an option to add a
constraint limiting the collection. As in the case of the previous
example, a user searching for booksby James, need only enter the
query term “James” to first get a list of books containing the word
“James,” and then add the limiting condition to filter for booksby
James.

When presenting the navigation suggestions to the user, the inter-
face groups suggestions by properties (such as cooking method,
ingredients, etc.) and displays the first few values to give the user
with appropriate context. Users wanting more choices for a given

refinement can ask the user interface to present them with more
options (by clicking on the ‘...’).

3.3 Supporting power users
The navigation pane supports power users by allowing them to
browse and select multiple navigation suggestions. The context
menu on the query allows users to select a compound navigation
option like conjunction or disjunction to be applied as a refinement
to the current collection. Users can drag suggestions into this com-
pound refinement option, and use them to build a complex query.
For example, a user being given Figure1 can decide that he wants
only those items in the current collection that either have a dairy
product or a vegetable in them. The user will need to use the con-
text menu to tell the system to build an ‘or’ refinement, and then
drag ‘dairy’ and ‘vegetables’ from the panel into the refinement for
execution.

Additionally, since the navigation suggestions are created by the
user interface inside one or morecollections, users can navigate
to these collections of suggestions (using the context menu) and
browse them to find refinements useful for the original query. When
users navigate to such collections, the interface provides a sub-
pane within the navigation pane for the user to drag refinement
options, and then click on an ‘apply’ button. Thus, when look-
ing at a collection of recipes, users can navigate to the collection
of ingredients, refine the given collection to get those ingredients
found only in North America, and then apply the query to either
get recipes having an (using or) ingredient found in North Amer-
ica, or to get recipes having all (using and) their ingredients found
in North America.

4. THE NAVIGATION ENGINE
Researchers in the HCI community argue that for users to navigate
through a given space, with minimal prior knowledge of its organi-
zation, each view must present information to help the user make
their next navigational decision [16]. They agree that designers
need to take into account the learning done by the user during the
process and account for the revisions in the search query based on
the learned information. Bates [1, 3] shows that when automation
is introduced, users want to be able to direct the search. She in-
vestigates the level of automation that designers need to give their
search system, and recommends support for both the overall search
strategies and individual steps such as adding query terms, consid-
ering the outcomes of refinement steps, and broadening queries.
Magnet aims to support the search process and overall strategies by
implementing recommenders of single-step refinement tactics.

The single-step refinement tactics suggested by Magnet’s naviga-
tion engine are presented via advisors (in the user/search domain)
fed by one or more analysts (in the programmatic domain). While
analysts represent algorithmic units, they associate their sugges-
tions with advisors, which are targeted towards supporting the users’
search strategies.

4.1 Navigation Advisors
Navigation recommendations are posted by analysts on a shared
blackboard that is published on the interface by navigationAdvi-
sors. Each advisor presents a particular type of navigation step.
These advisors are integrated in an easily extensible manner to
allow schema experts to support new search activities. They are
designed to work on the currently viewed item, i.e., they work
with both documents and collections (of documents). Applying

Bates’ [1] recommendations for the support of single-step refine-
ment tactics, the following advisors have been implemented:

Related Items Suggests options for navigating from the viewed
item to a collection of similar items:

Sharing a property That have a given metadata attribute and
value in common with the currently viewed item.

Similar by Content (Overall) That share similar content with
the currently viewed item. Similar content refers to a
fuzzy approach (as determined by a standard learning
algorithm) to showing other items having both similar
structural elements (properties) and similar textual el-
ements. There are typically two different analysts that
are associated with this advisor, one for working with
single items and providing other related items, and the
other for working with collections and providing more
items similar to the items in the collection.

Similar by Visit That were visited the last time the user left
the currently viewed item (or left a recently viewed
item). This can be thought of as an intelligent his-
tory that presents those suggestions that the user has
followed often in the past from the current document.

Contrary Constraints That have one of the current collec-
tion constraints inverted. This advisor helps users get
an overview of other related information that is avail-
able.

Refine Collections Suggest navigation based on identified prop-
erties and values common to some but not all items in the
collection. The selected property and value may be used to
either filter the current collection, or remove matching items
from the current collection. Alternatively, a user can also use
the refinement suggestions as terms to expand the collection
and include other matching items.

History Suggests navigation to previously seen items:

Previous That have been seen most recently.

Refinement That are in the refinement trail.

Since there are many possible navigation suggestions to present to
the user the navigation advisors are responsible for selecting the
most relevant ones and presenting them to the user. The advisors
use the analyst-provided information retrieval weights associated
with each suggestion to select the navigation suggestions. Analysts
providing suggestions to a shared advisor therefore need to have a
common approach to giving weights to suggestions. Selected sug-
gestions are presented in the interface typically sorted in an alpha-
betical order to enable users to search for a particular suggestion.

4.2 The Query Engine
The query engine provides support for resolving the various set
concepts. The query engine lets users take the various naviga-
tion suggestions (which are predicates) and combine them. By
default combination is predicates is by conjunction (and) but the
user can also use the context menu to specify disjunction and nega-
tions. Furthermore, the query engine provides an extension mech-
anism for analysts, such that the engine can provide a uniform in-
terface to query both metadata (requiring exact matches) and other

attribute value types. For example, the query engine has been ex-
tended to uniformly query an external index to support text in docu-
ments. Another extension is provided to support numeric attributes
in queries by allowing range comparison via greater than and less
than predicates.

4.3 Analysts and Blackboard System
Magnet uses a blackboard model [20] to create and suggest nav-
igation options to the user.Analystsare triggered by the frame-
work based on the currently viewed (document, collection of doc-
uments / result set, query, etc.), and suggest a particular kind of
navigation refinement by writing it on the blackboard. The Magnet
framework collects the recommendations from the blackboard and
presents them with the associated navigationadvisorsto the user.

For example, when the user is viewing a collection of items, a num-
ber of analysts are triggered, each providing information to the ‘Re-
fine Collection’ advisor. One analyst looks for commonly occur-
ring property values and adds them as possible constraints to the
current query. Other analysts provide support for keyword search
within the collection (as shown under ‘Query’ in the Navigation
Pane in Figure1) and others provide support for refining the col-
lection based on the type of the data in the collection (for example
having range widgets for refining continuous valued types as shown
later).

Analysts are triggered by one of many mechanisms. They can be
triggered when a user navigates to items of a given type (for ex-
ample collections or e-mails), and can be triggered by results from
other analysts. Once triggered, an analyst can provide a variety of
types of recommendations. Most analysts recommend a specific
document or collection, others recommend possible query terms to
be used in conjunction with the current query (or for a brand new
query), and at the most general some analysts specify arbitrary ac-
tion to be performed upon selection of the suggestion (like running
a learning algorithm to find similar documents to the current docu-
ment).

5. A VECTOR SPACE MODEL
To provide effective navigation suggestions, we fit semistructured
data into a vector space model of the form frequently used for tex-
tual document retrieval [13]. This allows support for fuzzy notions
of similarity on top of the black-and-white boolean queries that typ-
ify database search tools. Additionally, it lets us take advantage of
the large body of work on query refinement in text repositories [13,
27] can be taken advantage of for designing navigation advisors.
We describe an approach to adapting the basic concepts from the
field and show how we apply them.

The vector space model maps text documents to vectors, with a co-
ordinate for each word in the corpus, whose value is set according
to the number of occurrences of that word in the document. While
the approach is limited in that the two sentences ‘John ran faster
than David’ and ‘David ran faster than John’ lead to the identi-
cal representations, the model is still helpful in that it can say that
John and David where involved in running and that one of them
is faster. Improvements to the model include removing frequently
occurring words (stop-words), removing common suffixes (stem-
ming) and normalizing tenses of words. As an example, we might
map “Betty bought some butter, but the butter was bitter” to give
the vector:
〈betty ⇒ 1, buy ⇒ 1, some ⇒ 1, butter ⇒ 2, bitter ⇒ 1〉

5.1 Building the model

Figure 3: An RDF Graph of some recipes.

Figure 4: The vector space model representation of the recipes
(corresponding to Figure3). The values in upper case (such as
for the type, course, cooking method, and ingredient attributes)
are objects, while the values in lower-case (such as the title
and content attributes) are text strings which have been further
split-up.

We apply the vector space model to semistructured. For a given
item, for example ‘Apple Cobbler Cake’ shown in Figure3, each
attribute/value pair associated with a given piece of information is
treated as a coordinate in a vector space model (as shown in Fig-
ure 4)—just as terms usually are for text documents. As in the
traditional vector space model individual words in paragraphs of
text are split up and represented as coordinates. When attribute
values are other items (rather than primitive elements like numbers
or strings), we represent them by unique identifiers in the model. In
other words, we have one coordinate for each attribute-value pair.

With the vector space model, a common extension calls for having
multiple word phrases as coordinates. While this form of exten-
sion is also helpful in semistructured version of the model, another
axis of extension is also helpful with semistructured data—that of
composing multiple attributes and thereby providing support for
“transitive” relations in the model. For example, since documents

have authors and authors can have fields of expertise, a property
that might be helpful for browsing is “the author’s field of exper-
tise” and it might therefore be helpful to encode such a relationship
in the model. Ideally the model should be built and provide results
based on all possible attribute compositions. However, semistruct-
ured information can be highly interconnected, and therefore for
performance reasons Magnet only selectively adds attribute com-
positions into the model. The attribute compositions that should
be included as coordinates in the vector space model are listed as
schema annotations in the data store. These annotations can be en-
tered by schema experts or by advanced users through the interface
(in the context menu). Additionally, just as systems can be built
to learn phrases for use in traditional vector space models, we ex-
pect that systems might ultimately learn to automatically detect and
incorporate important compositional relations.

5.2 Implementation considerations
Once the vector space model is extended for semistructured data,
a few transformations are applied to ease integration with tradi-
tional information retrieval techniques. For example, in Magnet
performance is enhanced by “indexing” the data in advance (as it
arrives)—an appropriate vector is built for each item, and stored in
a vector-space database (the Lucene text search engine [15] is used
for this purpose).

The semistructured vector space model can then apply thosenor-
malizationstraditionally recognized as being effective in the vector
space model [24]: tf.idf term weighting which divides the term-
frequency of an attribute/value coordinate by the (log of the) num-
ber of times that attribute/value appears in the corpus, helps the
system ignore those attribute values that are very common. We nor-
malize each document vector to a length of one, in order to give ob-
jects equal importance rather than giving more importance to items
with more metadata. New weights of the vector space model are
therefore calculated as follows:

term-weight= log(freq+ 1.0)× log
�

num-docs
num-docs-with-term

�

normalized-weight= term-weight√P
∀term term-weight2

Semistructured data adds a level of complexity to the normalization
approach, since items can differ both in the number of attributes
they have and in the number of values they have for a given (mul-
tivalued) attribute. While selecting the appropriate form of nor-
malization can be task dependent, we have chosen to use an ap-
proach similar to that used in ranking documents in Lucene, i.e.,
to first divide each term frequency by the number of values for the
attributes, and then to normalize each object as mentioned above.
This approach gives equal importance to different attributes in a
document, i.e. for an email, the importance of the subject is the
same as the importance of the body.

5.3 Applying traditional techniques
Once the semistructured-extended vector space model is normal-
ized, traditional information retrieval techniques can easily be ad-
apted to support it. Thesimilarity between two documents or be-
tween a document and a query can be determined by a traditional
dot-product between the two vectors [12]. The dot-product is used
since documents with many terms in common, which intuitively are
similar, have a larger dot product. In a natural generalization, we

determine the similarity of a document to a collection by dotting
the document’s vector with an “average member” of the collection
using a vector made up of the (normalized)sumof the vectors in
the collection.

To suggest terms to add to the query we use aquery refinementtech-
nique, which seeks words in textual queries that are common (but
not too common) in the current result set [27]. Query refinement
can be applied in the semistructured data case to suggest attributes
and values be added to the current query to refine the result set.
Given that normalization of vectors in the model was done explic-
itly to decrease weights on terms occurring too frequently, applying
this technique involves just picking terms in the average document
having the largest normalized term weights.

5.4 Numeric Attributes
The vector space model works well when the interesting thing about
attribute values is whether they are equal. However, it is common
to encounter attributes such as dates that are numeric; in this case,
it is not just equality but also numerical closeness that can indicate
similarity. Here the interface makes it possible to allow the user to
refine a collection by specifying a specific range for this property.
The range selection controls shown in Figure5 applies to a collec-
tion of e-mails exposed in the user interface and uses two sliders
to select the upper and lower boundary presenting hatch marks to
represent documents thus showing a form of query preview.

Figure 5: Possible interfaces that can be used to show date op-
tions

We support these continuous-valued attributes by extending the query
engine to use attribute types and use the information to provide
support for range comparison operations in queries. Furthermore,
we support algorithms for measuring similarity byalsoconverting
these attribute values into numbers, thereby allowing two e-mails
received a day apart: ‘Thu July 31, 2003’ and ‘Fri August 1, 2003’
to have some similar attributes (rather than just having the year be
common in them). To keep the numeric values (which might be ar-
bitrarily large) from swamping other coordinates in the vector space
model when we normalize, we map the numeric range to the first
quadrant of the unit circle, so that all values have the same norm
but different values have small dot product.

6. EVALUATION
Magnet was designed to provide a usable yet flexible way to meet
users search needs with semistructured data. Towards this goal, we
conducted preliminary evaluations on three axes. We first looked
at Magnet’s flexibility to work with varying data source. We then
evaluated browsing flexibility. Finally, we tested the interface through
a user study.

Our ability to conduct a user study was limited by the challenge of
developing good evaluation metrics for browsing, and in particular
by the absence of a preexisting semistructured corpus with ques-
tions and predetermined answers we could compare it. Thus, much
of the study is qualitative in nature. Nonetheless, various interest-
ing points were revealed.

6.1 Datasets

Figure 6: A view of the output provided by the navigation sys-
tem in the user’s Inbox.

We tested data generated by the underlying system and then tested
on data from external sources. We used the system on a collec-
tion of e-mails in the system’s Inbox (Figure6). Magnet suggested
refining by the document type since the inbox contains messages
as well as news items from subscription services. The system also
used the annotation that body is an important property to compose
with a second level of attributes and suggested refining by the type,
content, creator and date on the body (as can be seen in the figure).
Additionally, the system provided a range control to refine by the
sent dates of items in the inbox, and gave the user the option of
querying within the collection.

The system was tested on four external datasets. Two of these were
a collection of information about 50 states provided as a comma
separated file and an RDF version of the CIA World Factbook.
We expected only limited results in both datasets since they have
document properties encoded as human-readable strings rather than
marked up semantically.

For the 50 states dataset1, shown in Figure7, RDF identifiers were
displayed since the dataset did not have human-readable labels as-
sociated with them. This system did point out interesting attributes
that a searcher might need, for example, the fact that seven states
have ‘cardinal’ in their bird names, and allowed for clicking on the
name to give the a collection of states with the property. Adding
labels on each property and annotating the area property to indi-
cate that it is an integer made the interface more user-friendly (as

1Extracted fromhttp://www.50states.com and made avail-
able as a comma-seperated values file.

http://www.50states.com

Figure 7: The output provided by Magnet’s interface for the 50
states dataset (as given).

shown in Figure8) by showing expected label and range controls
for the area. The figure clearly shows one state (Alaska) having a
much larger area than the rest, and shows that a number of states
have the same bird and flower. Similarly, the CIA World Factbook2

results with Magnet improved with label and attribute-value type
annotation. The navigation system did recommended navigating to
countries that have the same independence day or currencies.

Figure 8: Adding annotations for state area and labels for prop-
erties.

Two other datasets used for evaluating the system were independent
external conversions to RDF of the data behind MIT OpenCourse-
Ware3 and ArtSTOR4 These datasets did have label and attribute-
value annotations, allowing Magnet to present easy to understand
navigation suggestions. The attributes that Magnet suggested for
refinement did include options that where not human-readable. While
these options were determined to be algorithmically significant for
refining, they were not deemed important for end-user navigation.
While Magnet does provide custom annotations to hide such at-
tributes, it does indicate room for improvement in the actual algo-
rithm for selection of term weights.

6.2 Browsing Flexibility
We tested the flexibility of the navigation engine using the collec-
tion of topics provided by the INitiative for the Evaluation of XML
retrieval (INEX) [9] (created by the DELOS Network of Excellence
for Digital Libraries and the IEEE Computer Society). The collec-
tion is used for evaluation of search result rankings and consists of
2Available in RDF athttp://www.ontoknowledge.org/oil/
case-studies .
3Available athttp://ocw.mit.edu/
4A non-profit organization to develop and distribute electronic dig-
ital images.http://www.artstor.org/ .

two types of search topics: those having text only (words in docu-
ment) and topics that have both textual information and structural
information. While Magnet does not currently support ranking doc-
uments, these search topics were used to evaluate the flexibility of
the engine.

The first set of search topics, that Magnet’s flexibility was exam-
ined against where those containing both text and structure. One
such query required the “Vitae of graduate students researching In-
formation Retrieval” from the given corpus. Magnet’s navigation
engine did have the flexibility to retrieve most of the documents
needed. However, the system would have presented a better inter-
face if annotation had been provided for the composition of the re-
lations, i.e., the multiple steps used in the XML documents. Since
Magnet has been designed to support the more general graphs of
data (which can have cycles), as opposed to trees found in XML
(having finite depths), Magnet would not follow multiple steps by
default. Telling Magnet that the information is structured as a tree,
or using the set of possible XML paths as indication of possible
compositional relationships would have provided a cleaner inter-
face. A second limitation of Magnet when compared to the INEX
search topics was that Magnet’s focus of providing a browsing in-
terface provides a limited exposure to the query engine by default.
Magnet would have been able to better support INEX searches with
integrated support for a larger set of basic queries, for example, a
user might want to look at all recipes having 5 or fewer ingredients.

The other set of topics provided by INEX were topics consist-
ing only of text portions, for example: “software cost estimation”.
Such searches involved the direct application of traditional IR tech-
niques to find the relevant text. Since Magnet is built on these tech-
niques, it would have been able to retrieve all such documents. In
such situations, the only weakness with Magnet compared to other
systems was the absence of document reordering, for example, as
shown by Kamps et al. [17] biasing results to favor large documents
can improve such queries since the results are otherwise swamped
by significant numbers of small documents. Such improved results
can be directly extended to Magnet.

6.3 User Study
A preliminary user study was conducted to understand issues raised
by the system, and to ensure that the user was not swamped by
too much advice. Our interface was modeled after Flamenco’s
faceted metadata navigation system [28], and we therefore built
a baseline system consisting of navigation advisors suggesting re-
finements roughly the same as those in the Flamenco system. The
baseline system also included terms from the text of the documents
and allowed users to negate the terms by right clicking on them.
The second interface represented the complete system, and had all
the advisors mentioned earlier. In particular, beyond collection re-
finement, it allowed users to get documents similar to the current
document by analyzing the document content and explicitly sug-
gested the user with contrary options (negating a current search
constraint).

Prior to the study, feedback from 6 users was used to iteratively im-
prove the interface and resolve performance issues. The study used
data from 6,444 recipes and metadata extracted from the site Epicu-
rious.com. 244 ingredients were semi-automatically extracted from
the recipes and grouped to supplement the data (as shown in Fig-
ures1 and2). The study included two undirected tasks (the first and
last tasks) where the users had minimal constraints, and were asked
to simply ‘search recipes of interest’. Two directed tasks were also

http://www.ontoknowledge.org/oil/case-studies
http://www.ontoknowledge.org/oil/case-studies
http://ocw.mit.edu/
http://www.artstor.org/

given to users where they were constrained to find particular kinds
of recipes:

• When an aunt left your place, you found a recipe that she had
been excited about and had left behind by mistake. While
looking at the recipe you realize that it has walnuts and that
your uncle is allergic to nuts. Find the recipe on the system
and a few 2-3 other related recipes that your uncle and aunt
may like.

• You are planning a party for some friends. The party is sup-
posed to be a Mexican themed night, and you have been
asked to plan a menu. Make sure you have some soups or ap-
petizers, as well as salads and desserts on top of the meal. Try
to include some of your favorite ingredients that you men-
tioned earlier.

6.3.1 Results and Discussion
The study was advertised via paper posters through the Computer
Science building. There were 18 participants is the study, all of
whom were graduate students in our program. The study brought
out a number of qualitative differences between the two systems.
Only one user complained that the navigation options were over-
whelming and this was on the baseline system. Since there were
minor differences between the baseline system’s interface and the
Flamenco user interface, these differences may be worth investigat-
ing.

Most mistakes while doing the tasks seemed to be due to capture
errors [21], i.e. users performed an incorrect but more easily avail-
able sequence. For example, in the first directed task, users were
expected to find recipes similar to a target recipe but that did not
have nuts in them. Some users attempted to find recipes by adding
2 or 3 ingredients,including nuts, as constraints to get a list of
recipes, and then issuing a refinement to exclude items with nuts,
producing the empty result set. In other cases, as well users seemed
to be mapping negation to ‘find similar but not’. The Magnet inter-
face currently presents users with navigational suggestions that are
either explicitly boolean (adding refinement constraints) or explic-
itly fuzzy (getting similar documents), however, since users find it
difficult to work with zero results [8], it may be worth modifying
the queries to perform more fuzzily in the case when zero results
would have been returned otherwise.

Users did seem to be able to use the navigation options when they
created the sub-problems themselves. For example, in the second
directed task, we expected that users would look at the subset of
Mexican dishes and then explore within them. However, some
users searched for one or two of their favorite ingredients, then re-
fined by Mexican cuisine. Another user searched for her favorite
dish first, asked the system to give similar recipes and then refined
by Mexican. Users seemed to not have problems using the extra
features (over the baseline systems) either when they were doing
an undirected part of the task, or after they used it once or twice.

Even though users’ errors seemed to indicate that they found the
system complex and needed time to get used to it, users were more
successful using the complete system than using the base system.
For example, most users on both systems had a hard time getting
negation right as needed in the first directed task (removing nuts
from the listed recipes). However, even when not sure how to
proceed with the system, users working with the complete system
found it easier to accomplish those tasks since the contrary advisor

would suggest negation to get them started in the process. Users
also found more recipes to match the criteria of the tasks. For the
first directed task, users found on average 2.70 recipes with the
complete system and 1.71 recipes with the baseline system; and
for the second task, users found on average 5.80 recipes with the
complete system and 4.87 recipes with the baseline system. Since
the study was small, we cannot claim statistical significance in the
data.

7. CONCLUSIONS AND FUTURE WORK
As rich semistructured data under numerous and often-violated sch-
emata becomes more pervasive, we must deploy tools that help un-
sophisticated end users locate information. The orienteering para-
digm, in which users browse large collections and “home in” on in-
formation of value, is an effective tool for such users [25]. We have
presented a tool that aims to support users browsing in large col-
lections of semistructured data. Without requiring schema-specific
customization, Magnet presents users with useful query refinement
and navigation steps that they can use to seek out information of
interest. Magnet demonstrates that some of fuzzy information re-
trieval techniques that are effective in textual information retrieval
can be applied effectively to semistructured information.

We have conducted preliminary evaluations of the approach on dif-
ferent data sources (with varying schema information), examined
the flexibility of the browsing interface on queries from XML re-
trieval initiatives, and conducted a user-study with a system shown
to work with metadata browsing. Evaluations indicated a num-
ber of directions for building on the system. When dealing with
datasets, it was found that a number of simple annotations are often
needed such as indicating attribute value types or attribute compo-
sitions. Heuristic rules or learning approaches to determine such
annotations will be helpful. Additionally, even though users in the
user-study had fewer problems and found more items using the tool
when compared to a base system, a few interface issues were found.
The evaluation indicated a need to examine finer interface details
like the ease of negating and the learning curve, before conducting
a larger scale evaluation of the system.

8. ACKNOWLEDGEMENTS
We would like to thank David Huynh for comments and help with
this research, Dennis Quan for developing most of the system that
Magnet runs on, and Prof. Samuel Madden, Prof. Randall Davis,
and Suelene Chu for help with the content of this paper. This work
was supported by the MIT Simile project, the MIT-NTT collabora-
tion, the MIT Oxygen project and a Packard Foundation fellowship.

9. REFERENCES
[1] Marcia J. Bates. Information search tactics.Journal of the

American Society for Information Science, 30(4):205–214,
1979.

[2] Marcia J. Bates. The design of browsing and berrypicking
techniques for the online search interface.Online Review,
13(5):407–424, October 1989.

[3] Marcia J. Bates. Where should the person stop and the
information search interface start?Information Processing
and Management, 26(5):575–591, 1990.

[4] David Carmel, Yoelle S. Maarek, Matan Mandelbrod, Yosi
Mass, and Aya Soffer. Searching XML documents via XML
fragments. InProceedings of the 26th annual international

ACM SIGIR conference on Research and development in
informaion retrieval, pages 151–158. ACM Press, 2003.

[5] Tiziana Catarci, Maria Francesca Costabile, Stefano
Levialdi, and Carlo Batini. Visual query systems for
databases: A survey.Journal of Visual Languages and
Computing, 8(2):215–260, 1997.

[6] Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and
John W. Tukey. Scatter/Gather: a cluster-based approach to
browsing large document collections. InProceedings of the
15th annual international ACM SIGIR, pages 318–329.
ACM Press, 1992.

[7] Daniel Egnor and Robert Lord. Structured information
retrieval using XML. InWorking Notes of the ACM SIGIR
Workshop on XML and Information Retrieval, 2000.

[8] User Interface Engineering. Users don’t learn to search
better.http://www.uie.com/Articles/not_
learn_search.htm .

[9] Norbert Fuhr, Mounia Lalmas, and Saadia Malik, editors.
INitiative for the Evaluation of XML Retrieval (INEX).
Proceedings of the Second INEX Workshop, December 2003.

[10] George W. Furnas and Samuel J. Rauch. Considerations for
information environments and the NaviQue workspace. In
Proceedings of the third ACM conference on Digital
libraries, pages 79–88. ACM Press, 1998.

[11] Roy Goldman and Jennifer Widom. Interactive query and
search in semistructured databases. InProceedings of the
First International Workshop on the Web and Databases
(WebDB ’98), Lecture Notes in Computer Science 1590,
pages 52–62. Springer-Verlag, March 1998.

[12] Donna Harman. Ranking algorithms. In William B. Frakes
and Ricardo Baeza-Yates, editors,Information retrieval:
data structures and algorithms, chapter 14, pages 363–392.
Prentice-Hall, Inc., 1992.

[13] Donna Harman. Relevance feedback and other query
modification techniques. In William B. Frakes and Ricardo
Baeza-Yates, editors,Information retrieval: data structures
and algorithms, chapter 11, pages 241–263. Prentice-Hall,
Inc., 1992.

[14] Haystack. The universal information client.
http://haystack.lcs.mit.edu/ .

[15] The Apache Software Foundation Jakatra Project. The
Lucene search engine.http://www.lucene.com/ .

[16] Susanne Jul and George W. Furnas. Navigation in electronic
worlds: Workshop report.SIGCHI Bulletin, 29(4):44–49,
October 1997.

[17] Jaap Kamps, Maarten Marx, Maarten de Rijke, and Börkur
Sigurbj̈ornsson. XML retrieval: What to retrieve? In
Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion
retrieval, pages 409–410. ACM Press, 2003.

[18] O. Lassila and R. Swick. Resource description framework
(RDF): Model and syntax specification.http://www.w3.
org/TR/1999/REC-rdf-syntax-19990222 ,
February 1999. W3C Recommendation.

[19] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan
Quass, and Jennifer Widom. Lore: A database management
system for semistructured data.SIGMOD Record,
26(3):54–66, 1997.

[20] H. Penny Nii. The blackboard model of problem solving and
the evolution of blackboard architectures.AI Magazine,
7(2):38–53, Summer 1986.

[21] Donald A. Norman. Design rules based on analyses of human
error.Communications of the ACM, 26(4):254–258, 1983.

[22] Peter Pirolli and Stuart Card. Information foraging in
information access environments. InConference proceedings
on Human factors in computing systems, pages 51–58. ACM
Press/Addison-Wesley Publishing Co., 1995.

[23] The Simile Project. Longwell suit of web-based RDF
browsers.http://simile.mit.edu/longwell/ .

[24] Jason D. M. Rennie, Lawrence Shih, Jaime Teevan, and
David R. Karger. Tackling the poor assumptions of naive
bayes text classifiers. InProceedings of the Twentieth
International Conference on Machine Learning, 2003.

[25] Jaime Teevan, Christine Alvarado, Mark S. Ackerman, and
David R. Karger. The perfect search engine is not enough: a
study of orienteering behavior in directed search. InCHI ’04:
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 415–422. ACM Press, 2004.

[26] Agathoniki Trigoni. Interactive query formulation in
semistructured databases. InProceedings of the Fifth
International Conference on Flexible Query Answering
Systems (FQAS 2002), Lecture Notes in Computer Science
2522, pages 356–369. Springer-Verlag Heidelberg, October
2002.

[27] Bienvenido Vlez, Ron Weiss, Mark A. Sheldon, and
David K. Gifford. Fast and effective query refinement. In
SIGIR ’97: Proceedings of the 20th annual international
ACM SIGIR conference on Research and development in
information retrieval, pages 6–15. ACM Press, July 1997.

[28] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti
Hearst. Faceted metadata for image search and browsing. In
CHI ’03: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 401–408. ACM Press,
2003.

[29] Franois Yergeau, Tim Bray, Jean Paoli, C. M.
Sperberg-McQueen, and Eve Maler. Extensible markup
language (XML).http:
//www.w3.org/TR/2004/REC-xml-20040204/ ,
February 2004. W3C Recommendation.

http://www.uie.com/Articles/not_learn_search.htm
http://www.uie.com/Articles/not_learn_search.htm
http://haystack.lcs.mit.edu/
http://www.lucene.com/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://simile.mit.edu/longwell/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/

	Introduction
	Related Work
	Interface Walkthrough
	Starting information searches
	Navigation pane
	Supporting power users

	The Navigation Engine
	Navigation Advisors
	The Query Engine
	Analysts and Blackboard System

	A Vector Space Model
	Building the model
	Implementation considerations
	Applying traditional techniques
	Numeric Attributes

	Evaluation
	Datasets
	Browsing Flexibility
	User Study
	Results and Discussion

	Conclusions and Future Work
	Acknowledgements
	REFERENCES

