
The Semantic User Interface Paradigm for Presenting Semi-structured Information

David F. Huynh DFHUYNH@AI.MIT.EDU
Dennis Quan DQUAN@MIT.EDU
Vineet Sinha VINEET@AI.MIT.EDU
David Karger KARGER@THEORY.LCS.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139 USA

1. Introduction

The Haystack project (Huynh et al., 2002; Haystack, 2002)
seeks to store and manage semi-structured data in the user’s
personal information corpus. There arises a need to present
and allow the user to interact with such semi-structured
data. Unfortunately, this semi-structured data is often mod-
eled in several schemas, some of which are created or, if
already existing, extended by the user. The Haystack user
interface cannot be hardwired to handle only fixed system
schemas and cannot use compiled user interface resource
templates to present the data. The user interface needs to be
flexibly constructed at runtime based on the semantics of the
semi-structured data to be displayed. This paper describes
the Semantic User Interface paradigm that we have created
for dynamically constructing the user interface of Haystack.

2. Problems with Existing UI Technologies

Most existing user interface technologies rely heavily on the
use of resource templates for UI constructs such as dialog
boxes and menus. The static nature of these resource tem-
plates is not suitable for displaying semi-structured data
whose constitution is not known a priori or is changed and
extended frequently. UI designers must explicitly make their
UI dynamically adaptable to the changing data. Further-
more, UI work is rarely reusable. Each UI designer must
add his or her own code to present data that is already dis-
played in proper form somewhere else by someone else.

There do exist some mechanisms for embedding UI compo-
nents within one another (e.g., Object Linking & Embed-
ding (OLE) framework, Model-View-Controller (MVC)
paradigm), but these mechanisms are lacking. In the MVC
paradigm, a UI designer wishing to reuse an existing view
must explicitly specify that view’s implementation in his or
her UI construction code. Should the view’s implementation
be replaced, the UI designer’s code becomes outdated. The
OLE framework resolves this problem by providing a dy-
namic binding scheme that looks up and then embeds view

implementations dynamically at runtime. However, for each
piece of data whose view is desired, the OLE framework
can only instantiate one view—often the content view. The
UI designer cannot specify the type of view to embed.

Because existing UI technologies are not powerful enough
to support flexible reuse of UI components, each UI de-
signer is left to improvise his or her own user interface de-
sign. He or she writes code to display almost each and every
type of data that his or her application deals with. Even in
the same application, different features written by different
UI designers contain different code fragments to display the
same type of data. The different code fragments provide
different UI capabilities to their corresponding UI elements.
In many cases, the piece of data that the user wants to inter-
act with is readily displayed, but its UI representation is no
more than dead pixels on the screen, affording no means for
interaction, so that the user is forced to take a different UI
route to manipulate it. This is a subtle but prevalent and
severe inconsistency in today’s user interfaces.

3. Constructing UI Dynamically

In order to build a consistent user interface, the Semantic
User Interface paradigm facilitates and encourages exten-
sive reuse of UI components. The paradigm specifies a dy-
namic binding scheme for embedding views much like that
used in the OLE paradigm. However, while OLE and MVC
rarely use more than one level of embedding, the SUI para-
digm encourages arbitrarily deep nesting of views. Further-
more, SUI views need not be rectangular child windows.
They can be inline segments of text that flow through sev-
eral lines. This flexibility makes views versatile and easy to
embed anywhere. In fact, the SUI paradigm strongly advo-
cates that each UI designer specializes in handling only the
types of data that he or she knows best and embeds views
made by other UI designers for other types of data.

The mapping from a piece of information, or a type of in-
formation, to the views capable of rendering it is stored en-

tirely as metadata in the RDF store of Haystack (Huynh et
al., 2002). The metadata describes the types and formats of
data that each view is capable of presenting as well as the
contexts in which each view is appropriate. Note that each
piece of information can have more than one view: an audio
file can be summarized in one line of text based on its play
time, title, etc., or it can be viewed in an audio player that
takes up a whole window. The former view is appropriate
where a short description is desired, and the latter should be
used when the user focuses solely on the audio file.

The Haystack user interface infrastructure provides a com-
ponent called the view selector that performs this mapping
automatically. While designing a particular view, a UI de-
signer can insert view selectors to embed inner views within
this view. At runtime, the view selectors look up and instan-
tiate appropriate inner views. In essence, the view selectors
act as the level of indirection in the dynamic binding
scheme of the SUI paradigm. They compose the UI dynami-
cally as a hierarchy of nested views.

4. Keeping UI Dynamic

In order to make a view a faithful representation of the cor-
responding piece of information, the SUI paradigm specifies
that the view should register for notifications from the RDF
store upon any change to the information that it displays.
For instance, “stacker” views have been designed to present
collections dynamically. (A collection is a mathematical set
of objects.) Given a collection, a stacker view constructs a
view selector for each element in that collection and stacks
the view selectors in some specified sorting order. The
stacker view also registers for notifications upon any change
to that collection. If a new element is added to the collec-
tion, the stacker view constructs a new view selector for it.
If an existing element is removed, the stacker view removes
the corresponding view selector.

A UI designer who makes use of a stacker view needs only
specify the sorting order for the elements and the specifica-
tions for the dynamically constructed view selectors so that
appropriate views of elements are produced. The stacker
views have effectively raised the level of abstraction for
rendering collections. In the future, grouping and other high
level presentation logics will be supported.

5. Supporting UI Features Uniformly

Because each piece of data is presented by a view, for any
pixel on the screen, there is a systematic way to detect
which of the currently displayed views enclose that pixel
and to trace back to the corresponding pieces of data being
presented by those views. That is, for every rendered pixel
there is a connection back to the data that pixel represents.

Based on these live connections between elements on the
screen and data they represent, we can easily and systemati-
cally provide features such as context menus and drag and
drop consistently throughout the Haystack user interface.
For instance, when the user right-clicks, we can trace back
through all of the pieces of data that the clicked pixel repre-
sents and construct a context menu listing all actions appli-
cable to those pieces of data. The result of supporting these
features consistently is a user interface in which UI elements
presenting the same piece of data afford the same set of ac-
tions corresponding to that data.

6. Proposed Benefits

We propose that the SUI paradigm has several benefits.
First, its scheme for constructing the UI by dynamically
nesting views raises the level of abstraction for UI design-
ers. The designer of the outer view needs not know the de-
tails of how the inner view is constructed but can simply
delegate the task of constructing the proper inner view to the
view selector. In addition, certain views such as the stacker
views allow the designer to specify UI construction specifi-
cations such as sorting orders in a higher level of semantics.

Furthermore, the stacker views, with their ability to update
the UI dynamically, effectively decouple the information
processing tasks from the UI presentation tasks. That is, one
can concentrate on managing the elements inside a collec-
tion without concerning oneself with how that collection is
being displayed. Since the UI gives a faithful representation
of the data, the view of that collection always reflects the
contents of the collection.

Finally, the result of systematic UI construction is a uniform
user interface in which features such as context menus and
drag and drop can be provided pervasively throughout the
whole application, making the application behave consis-
tently and predictably to the user.

References

Haystack (2002). http://haystack.lcs.mit.edu/.

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A
Platform for Creating, Organizing and Visualizing Infor-
mation Using RDF. Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002).
Honolulu, HI. http://haystack.lcs.mit.edu/papers/sww02.pdf.

Acknowledgements

This work was supported by the MIT-NTT collaboration,
the MIT Oxygen project, a Packard Foundation fellowship,
and IBM.

