
Basic Concepts for Managing Semi-structured Information in Haystack

Dennis Quan DQUAN@MIT.EDU
David F. Huynh DFHUYNH@AI.MIT.EDU
Vineet Sinha VINEET@AI.MIT.EDU
David Karger KARGER@THEORY.LCS.MIT.EDU
Marina Zhurakhinskaya MARINAZ@MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139 USA

1. Introduction

The Haystack platform (Huynh et al., 2002) is designed to
store and manage personal information such as e-mail,
documents, contacts, meetings, etc. These types of data are
semi-structured in nature and thus are better expressed as
semantic networks rather than as tables. We believe that any
system whose primary data model is semi-structured has at
least four intrinsic needs. First, as the semantic data net-
works inevitably grow, there is a need to organize them
conveniently and flexibly and to navigate them systemati-
cally. Second, since there is an enormous amount of struc-
tured and unstructured data in existence, the system must
also allow data exchange with the outside world to both
extend its knowledgebase and to facilitate collaboration with
users of other systems. Third, as a consequence of collabo-
ration, managing the cooperation of services among various
systems becomes important. Finally, cooperation requires
trust management for different sources of information. In
Haystack, we provide built-in solutions for all of these four
needs for organization, external data integration, service
cooperation, and trust management. This paper discusses the
various techniques that we use to fulfill these needs.

2. Resource Description Framework

Haystack makes use of the Resource Description Frame-
work (RDF) (RDF, 1998) as its primary data model. RDF is
one of the core technologies developed for the Semantic
Web project, designed specifically for modeling semi-
structured data. Here the basic unit of data is the RDF
statement, which takes the form of a triple of subject, predi-
cate, and object. The predicate is like an arrow pointing
from the subject to the object, both of which are like graph
nodes.

In addition, the predicates can themselves be treated as
graph nodes. If a predicate is thought of as an attribute
name, then one can form statements about that attribute it-

self. For example, age can be said to be numeric. For this
reason we do not distinguish RDF entities based on their
functions as subject, predicate, or object, but rather, we dis-
tinguish them based on their functions as monikers or con-
tent holders. An RDF resource, or resource for short, is an
abstract concept or concrete entity named by a Unique Re-
source Identifier (URI). An RDF literal is a string or XML
fragment that holds some content.

It is often necessary to define the kinds of predicates expect-
ed on certain resources. For example, if a resource repre-
sents a book, one would expect a predicate named “pub-
lisher” to exist. The RDF Schema standard (RDF Schema,
1998) specifies the notions of an RDF class and an RDF
property, whereby properties can be associated with classes.
Moreover, RDF defines a built-in type predicate allowing
resources to be declared to be of one or more types. With
this notion, classes and properties are simply resources with
type Class and Property, respectively, and properties are
expressed by using the URI of the property as a predicate.

3. Organization and Navigation

In order to help the user systematically navigate his or her
personal information repository, there needs to be some
organization of the data by either the user or the system. In
most existing software, the sole facility for organization is a
hierarchy of containers (e.g., e-mail folders, file directories).
Often, each item to be organized can only fall into one con-
tainer, when in reality, it might belong in several. Further-
more, once filed away, an item remains out of sight and out
of mind; it can no longer serve as a reminder of a pending
task associated with it. We resolve these problems by intro-
ducing an inCategory predicate that links any data item to
zero or more category resources. In essence, the inCategory
predicate performs semantic tagging without constraining
the storage location of the data item. Each data item can be
easily classified into several categories. This categorization
mechanism is useful in many scenarios, ranging from orga-

nizing e-mail messages to classifying capabilities of soft-
ware components and agents.

When the purpose of organization is not categorization but
rather set inclusion, we make use of collections. A collection
is a mathematical set of objects. To make a collection, one
uses the hasMember predicate to link the collection resource
to its elements. As with categories, collections work on the
principle of membership, not containment: an item can be-
long in several collections at once. Collections can be used
to manage groups of items, e.g., the set of people in a room,
the set of documents and notes relevant to a meeting, or the
set of agents’ notifications needing the user’s attention.

4. External Data Integration

It is important for us to address how Haystack interacts with
unstructured data in the existing world. Today, URLs are
used to represent documents, images, web pages, and other
content accessible on a file system or over the World Wide
Web. With the advent of technologies such as XML Name-
spaces and RDF, a larger class of identifiers called URIs
subsumed URLs. Initially, RDF provided a means for anno-
tating web content. Web pages, identified by URLs, could
be referred to in RDF statements in the subject field, and
this connected the metadata given in RDF to the content
retrievable by the URLs. This is a powerful notion because
it makes use of the existing storage infrastructure.

However, with more and more content being described in
RDF, the question naturally arises: why not store content in
RDF? We argue this is not the best solution for two reasons.
First, storing content in RDF would be incompatible with
existing infrastructure. Second, leveraging existing infra-
structure (e.g., HTTP) is more efficient than using RDF en-
coding to retrieve files. Hence, we do not require that exist-
ing unstructured content be stored as RDF but instead store
some of the user’s unstructured data using existing tech-
nologies such as HTTP 1.1 and standard file I/O.

5. Service Cooperation

Applying RDF to describing agent interface, protocol, and
endpoint metadata can be done by leveraging existing stan-
dards. A specification called Web Services Description Lan-
guage (WSDL) (Christensen et al., 2001) already provides
an XML-based format for describing this metadata. When
the XML tags in WSDL are expressed as RDF properties,
the querying of connectivity metadata becomes simply a
special case of a more general RDF query mechanism ex-
posed by an RDF metadata store. Additionally, by defining
custom RDF properties developers can annotate agent de-
scriptions with arbitrary attributes, such as reliability, physi-
cal location, or even degrees of user preference.

6. Trust Management

In a system where a myriad of collaborators and computer
agents work together to process information, multiple agents
often generate conflicting information. Consider an example
where one agent determines the due date of a document by
using natural language processing and another agent does
the same by using the first date it finds. It is important that
these agents’ results be tagged with authorship metadata so
the user can make an informed choice of which result to
choose in case of a conflict. We can do this by giving RDF
statements identifiers (“reification”) and making statements
about statements using their identifiers.

Once we have a framework for recording statement meta-
data, we can examine issues of retraction, denial, and expi-
ration of assertions, i.e., statements asserted by specific par-
ties. Consider an example where an agent is responsible for
generating the title property for web pages. Those web
pages whose contents are updated daily have titles that
change constantly. One approach for handling constant mu-
tations in the information store is to allow agents to replace
an outdated statement with an up-to-date version. However,
it would be powerful to allow users to make queries of the
form “Find web pages that had the title ‘Car Maintenance
Tips’ at some point in time.” By allowing agents to retract
rather than delete their statements, queries can still be made
to retrieve obsolete information because this information is
not deleted. Additionally, this system permits users to over-
ride a statement made by an agent by denying the statement,
yet retains the denied assertion for future reference.

References

Christensen, E. et al. (2001). Web Services Description Lan-
guage (WSDL) 1.1. http://www.w3.org/TR/wsdl.

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A
Platform for Creating, Organizing and Visualizing Infor-
mation Using RDF. Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002).
Honolulu, HI. http://haystack.lcs.mit.edu/papers/sww02.pdf.

Resource Description Framework (RDF) Model and Syntax
Specification. (1999). http://www.w3.org/TR/1999/REC-
rdf-syntax-19990222/.

Resource Description Framework (RDF) Schema Specification.
(1998). http://www.w3.org/TR/1998/WD-rdf-schema/.

Acknowledgements

This work was supported by the MIT-NTT collaboration,
the MIT Oxygen project, a Packard Foundation fellowship,
and IBM.

